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Abstract

Strain localization is a well known phenomenon, generally associated with plastic deformation and rupture in solids,

especially in geomaterials. In this process, deformation is observed to concentrate in narrow zones called shear bands.

This phenomenon has been studied extensively in the last 20 years by different researchers, experimentally, theoretically

and numerically. A criterion for the onset of localization can be predicted solely on the basis of the constitutive law of

the material, using the so-called shear band analysis. This criterion gives the critical orientation, and the critical stress

state and strain for a given loading history. An important point, already stressed by Vardoulakis in 1980, is that in

particular, out-of-axes shear moduli play a central role in the criterion. These are the moduli involved in the response to

a deviatoric stress increment with principal axes oriented at 45� from total stress principal axes. Out-of-axes shear

moduli are difficult parameters to calibrate; common tests, with fixed principal stress and strain directions, do not

provide any information on these moduli, as long as they remain homogeneous. Still, real civil engineering and envi-

ronmental problems are definitely not simple axisymmetric triaxial tests; practical modeling involves complex stress

paths, and need complex parameters to be calibrated. Only special tests, like compression–torsion on hollow cylinder

tests, or even more complex tests can be used for shear moduli calibration. However, shear band initiation in homo-

geneous, fixed-axes tests does activate out-of-axes shear. Hence, it is natural that shear band analysis makes shear

moduli enter into the analysis.

Then, a typical inverse analysis approach can be used here: experimental observation of strain localization in triaxial

tests can be used together with a proper shear band analysis for the model considered, in order to determine out-of-axes

shear moduli.

This approach has been used for a stiff marl in the framework of a calibration study on a set of triaxial tests. The

steps of the method are presented, and the bifurcation surface in the stress space is exhibited. � 2002 Published by

Elsevier Science Ltd.

1. Introduction

During the last 20 years, a lot of work has been devoted to strain localization in solids, both on the
experimental and theoretical sides. It is well known that strain localization is associated with rupture in
many solids, from metals to geomaterials, including polymers, ceramics and other solids. As for soils and
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granular materials, experimental studies performed by Vardoulakis and co-workers (Han and Vardoulakis,
1991; Vardoulakis et al., 1978; Vardoulakis and Graf, 1985), Tatsuoka et al. (1990, 1986), Arthur and co-
workers (Arthur and Dunstan, 1982; Arthur et al., 1977), Finno and co-workers (Finno et al., 1996; Finno
and Viggiani, 1997), Desrues and co-workers (B�eesuelle et al., 2000; Desrues, 1984, 1990; Desrues et al.,
1996, 1985; Mokni and Desrues, 1999), and others (many other studies in rock) have established a number
of conclusions, among which the following can be listed as motivation for the present discussion:
(1) Strain localization in shear band mode can be observed in most, if not all, laboratory tests leading to

rupture in geomaterials, at least at sufficiently low temperature and pressure. The figure of the cylindrical
triaxial specimen split into two blocks, after some barrel-shaped deformation, by a single shear plane is
classical in soil mechanics (e.g. Fig. 1). However, shear banding is possible, and even very common, also in
short specimens as illustrated in Fig. 2, and even in cubical triaxial devices with strain control using rigid
platens, as shown in Fig. 3.
(2) Complex localization patterns may be the result of specific geometrical or loading conditions. In very

short specimens, shear bands can reflect several times from the rigid boundaries of the specimen, as revealed
on Fig. 4 by incremental strain field monitoring using stereophotogrammetry on a specially designed biaxial
apparatus.
Looking at the second increment from the left on the figure, one can see that a quasi-complete shear

band mechanism takes place suddenly at this time step (which is located just before the peak in the load–
displacement curve). Whether such a localization pattern is the result of a propagation phenomenon, or it

Fig. 1. Classical triaxial test specimen with shear plane; after J.L. Colliat-Dangus Doctoral Thesis, 1984 (Colliat-Dangus, 1986).
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rather corresponds to a ‘‘self-organization’’ process, is a matter for debate (see Desrues and Viggiani (in
preparation) for details). Herein, it is proposed to consider this increment as the onset of localization, and
the average orientation of the different branches of the band with respect to the vertical direction as the
shear band orientation, predicted by the bifurcation criterion.
In axisymmetric tests, strain localization may remain more or less hidden inside the specimen, especially

when improved test conditions are used, with reduced slenderness and refined anti-friction devices. How-
ever, Computed Tomography has made it possible to reveal that complex localization patterns can
take place inside the specimen (Desrues et al., 1996); these patterns are a combination of plane strain

Fig. 2. Short triaxial test specimen with shear plane(s), Photo J. Desrues.

Fig. 3. Strain localization in a cubical specimen tested in a rigid-platen true triaxial apparatus (after Desrues et al., 1985).
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mechanisms with reflections on the top and bottom platens of the testing device, similar to those shown in
cubical tests in Fig. 2.
(3) Well marked stress peaks in stress–strain curves can be considered as the signature of an established

shear band system over the specimens. Plane strain experiments performed by Desrues et al. on sand, using
stereophotogrammetry to detect precisely the onset of strain localization, have shown that the onset of
strain localization is always detected at or before the peak in the axial stress versus axial strain curve
(Desrues, 1984, 1998). Other experimental protocols have been used by different authors to detect the
onset of localization, for example sets of extensometers placed on the outer surface of the specimen
(B�eesuelle, 1999; B�eesuelle and Desrues, 2001; Goto et al., 1991), with the same result. It is sometimes
difficult to conclude in the case of axisymmetric tests on ductile geomaterials (sand, normally consolidated
clay, rocks under high confining pressure): when short specimens are used together with convenient end
lubrication, triaxial axisymmetric tests may show only very smooth (if any) peaks. Computed tomography
has made it possible to detect localization patterns in such tests, but the first onset of localization may
have been missed, because the observation is not as direct as in biaxial tests with stereophotogrammetry.
Hence, it is not always clear cut if the specimen has started to strain localize at peak or later. However,
since in such cases the curve shows only a slow decrease of the deviatoric stress, then the stress state does
not change much after peak. It follows that it can be considered more or less generally that a peak in the
axial stress–strain curve indicates that the stress conditions for the onset of shear banding have been
reached.
(4) Simple measurements can be made to get an estimation of the orientation of the shear bands. Direct

observation after completion of the test, even measurements on good quality photographs later, can give
precious information; in rock specimens, it has been shown by B�eesuelle (B�eesuelle, 1999; B�eesuelle and
Desrues, 2001) that the orientation can be measured quite accurately using the trace left on the inner surface
of the membrane by the intense shearing and damage undergone by the material inside the band.

Fig. 4. Strain localization in a very short specimen tested in a plane strain biaxial apparatus. Four successive loading increments

denoted i� iþ 1 are presented with i the serial number of the photograph. Photograph 4 is taken at the stress peak. The overall axial

strain between two photographs is about 1.3%. One can see that an almost complete localization mechanism takes place within the

deformation increment 4–5 (after M. Mokni Doctoral Thesis (Mokni, 1992)).

3760 J. Desrues, R. Chambon / International Journal of Solids and Structures 39 (2002) 3757–3776



(5) Shear band orientation does not change drastically with Lode’s angle. Shear bands can be observed in
triaxial compression tests, in biaxial tests, and in extension tests. Fig. 5 illustrates on a clay the two axi-
symmetric cases, compression (right) and extension (left): a single shear plane is clearly observed on the
compression specimen, while a set of parallel ones, can be detected on the extension specimen. However, the
orientation of the shear planes with respect to the major principal stress direction is comparable in the two
cases (Note that the lateral stress is the major principal stress in the extension test; thus, the orientation of
the shear band has to be measured with respect to the horizontal direction). Systematic measurements of
the orientation of the shear bands for rectilinear tests along different directions in the deviatoric plane, i.e.
different Lode’s angle, have been performed by Arthur (Arthur and Dunstan, 1982) using his directional
shear cell (DSC) apparatus and independently by Lanier et al. (Zitouni, 1988) using a True Triaxial Ap-
paratus. These tests are called constant b tests, b being an alternative measure of the stress phase, defined by
b ¼ ðrI � rIIÞ=ðrII � rIIIÞ. In both cases, a variation less than about 15–20� of the shear band orientation
has been measured for Lode’s angles from 0� (triaxial compression) to 60� (triaxial extension), which is
small compared to the scatter in the experimental data. It is clear at least, that no discontinuity in shear
band orientation can be expected on a continuous change of the stress path orientation in the deviatoric
plane.
On the theoretical side, it has been established since the years 1970 by Rice and co-workers (Rice, 1976;

Rudnicki and Rice, 1975), following previous work by Hadamard, Hill, Mandel, that the onset of shear
banding in a semi-infinite homogeneous body subjected to a homogeneous loading history can be predicted
solely on the basis of the constitutive equations of the solid. The subject of constitutive modeling has re-
ceived considerable attention in the second part of the last century, especially in geomaterials; the basic
concepts of Plasticity have given rise to a large number of variations, including non-normality, multi
mechanisms, bounding surfaces, multilaminate models and other elasto-plastic extensions of the original
framework; on the other hand, hypoplasticity has been introduced and developed in Europe (Chambon,
1989; Chambon et al., 1994a; Kolymbas, 1991) from a different point of view, not using the concepts of
yield surface and plastic potential (see Tamagnini et al. (2000a) for a synthesis of hypoplasticity at the end

Fig. 5. Two clay specimens tested in axisymmetric triaxial conditions, one in compression (right) and the other in extension

(left)––Photo J. Desrues.
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of the 90s). Whatever the framework is, the evolution of constitutive equations toward a proper accounting
of material behaviour complexity has led to incrementally non-linear constitutive equations (or equivalently
rate-type non-linear constitutive equations). These developments have progressed from only two constit-
utive zones (loading/unloading with respect to a single mechanism), then to several constitutive cones in the
stress space (related for example with several plastic mechanisms), and finally to thoroughly non-linear
equations, for which any change in strain rate direction induces a change in the tangent constitutive re-
sponse. As far as the localization criterion is concerned, incremental non-linearity introduces more com-
plexity in the problem. Rice and Rudnicki (1980) have discussed in detail the case of mono-mechanism
elastoplastic constitutive equations, introducing so-called continuous and discontinuous bifurcation for
respectively loading in both inner and outer shear band, and loading inside/unloading outside situations.
The framework of the linear comparison solid defined by Hill (1958) and extended by Raniecki and Bruhns
(1981) to non-associated solids makes it possible to establish some theoretical results on the effect of the
linearized approach (loading everywhere, i.e. continuous bifurcation) on the localization criterion. In the
case of thoroughly non-linear constitutive equations, in general, the localization criterion becomes fully
non-linear, which makes necessary some additional assumptions (e.g. Kolymbas, 1981) and/or numerical
search for solutions. However, in the case of hypoplastic constitutive equations, it has been shown by
Chambon and co-workers (Desrues and Chambon, 1989; Desrues et al., 1996) that due to the mathematical
structure of the models, an explicit localization criterion can be derived analytically despite the thoroughly
incremental non-linearity of the equations.
It follows from the theoretical studies briefly summarized above, that for most constitutive models for

geomaterials a localization criterion can be checked and will predict possible localization on the basis of the
pre-bifurcation material characteristics of the material. However, it is interesting to notice that among the
constitutive moduli which enter in the criterion, so-called out-of-axes shear moduli play a major role. This
was already observed by Vardoulakis in 1980 (Vardoulakis, 1980), who realized that this fact could be used
in the purpose of parameter identification:

‘‘The interpretation of the experimental data in the light of the above bifurcation analysis . . . yields an
estimate of the incipient modulus l.’’

In the following, the nature of the out-of-axes shear moduli and their relation with in-axes shear moduli
is recalled, the different ways of characterizing experimentally these shear moduli is discussed, a strategy for
a practical calibration of these moduli in relation with laboratory experiments is proposed, and illustrated
with a real case.

2. Shear modes and shear moduli

2.1. Shear modes

Considering an elementary volume of material (the dashed square on top of Fig. 6) submitted to a given
state of stress r, let us define two frames xy and XY respectively oriented parallel to and rotated by 45� with
respect to the principal stress directions 1, 2. On the second row of the figure, two strain rate increments
_ee ¼ ½ _eexx; _eeyy ; _eexy � are defined in the xy frame, namely _ee ¼ ½a;�a; 0� and _ee ¼ ½0; 0; a�, with a a positive scalar.
The first one is a purely deviatoric strain rate, with its principal directions coincident with the axis xy; the
second is purely deviatoric also, but its principal directions are coincident with axis XY. Row 3 in the figure
illustrates the fact that, if a smaller square part of the body is considered, with its edges parallel to the XY
frame, then for the same deformation rate the strain rate components expressed in the XY frame are simply
exchanged with respect to the line 2. The strain rates (A) and (C) in the left column are two expressions of
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the same strain rate, idem (B) and (D); but (A) is different from (B), and (C) from (D). Let us call in-axis the
shear modes (A) and (C), with reference to the principal stress axis; and out-of-axes the rates (B) and (D).
The strain rates ðAÞBðCÞ and ðDÞBðBÞ have the same invariants, only their principal directions are

different. If the material behaves isotropically, all directions in the plane are equivalent with respect to
material properties, then the two strain rates will produce the same stress rate response, only rotated ac-
cordingly. On the contrary, if the material is anisotropic incrementally, the stress rate response to in-axes
and out-of-axes will be different, not only by a simple rotation.

2.2. Shear moduli

According to the previous discussion, the incremental stress–strain relations must account for a different
response to the two different shear modes. This question has been studied by different authors. Biot (1939)
has shown, in the framework of linearized elasticity that when an isotropic medium is under an initial (non-
isotropic) stress, the incremental properties do not remain isotropic; in Biot (1963) he derives the in-
cremental stress–strain relations for an incompressible material, showing that they contain two elastic
coefficients N and Q corresponding to the shear modes called (A) and (B) here. Biot uses a finite strain
framework, and he writes the incremental equations between the time derivative of Cauchy stress and the
rate of the deformation gradient. Using an objective strain rate instead of time derivative of the Cauchy
stress, e.g. Jaumann stress derivative, would extract the additional terms linked to initial stress from the two
elastic coefficients N and Q, letting them equal. This remark does not contradict the result of Biot, but it
is meant to help comparison with later works discussed here, in which the differences between the shear

Fig. 6. Two different shear modes applied to an elementary volume: definition of in-axes and out-of-axes shear modes.

J. Desrues, R. Chambon / International Journal of Solids and Structures 39 (2002) 3757–3776 3763



moduli does not come only from finite strain geometrical corrections. In the sequel, all stress rates _rr are
supposed to be objective. This essentially means that when using the constitutive equations in the context of
finite strain calculations, e.g. finite strain finite element code, ad hoc corrections have to be added to
transform the objective stress rate specified into the time derivative of the Cauchy stress (or other).
Hill and Hutchinson (1975) introduce the shear moduli l and l� with the following definition:

_rr1 � _rr2 ¼ lð _ee1 � _ee2Þ ð1Þ

_rr12 ¼ l� _ee12 ð2Þ
The same definition is used by Vardoulakis (1980). In the sequel we will call l in-axes shear modulus and

l� out-of-axes shear modulus. In conformity with tradition, one might prefer 2l instead of just l, however
in the present paper we will use the same notation as the two references cited above.
Writing the incremental stress–strain relations (1) and (2) for the different shear modes considered in Fig.

6, we get for (A):

_rrxx � _rryy ¼ lð _eexx � _eeyyÞ ¼ 2la ð3Þ
and for (B):

_rrxy ¼ l� _eexy ¼ l�a ð4Þ
If the material is isotropic incrementally, stress–strain relations reads the same in xy and XY frame; then we
have for (C):

_rrXY ¼ l� _eeXY ¼ l�a ð5Þ
Considering (A) and (C), which are two expressions of the same shear mode, one recognizes that _rrXY is the
shear component on the direction at 45� from the xy frame, so we have:

_rrXY ¼ 1=2ð _rrxx � _rryyÞ ð6Þ

and then, using first (3) in (6) and recalling (5):

_rrXY ¼ la ¼ l�a

which proves that in the incrementally isotropic case, l ¼ l�. The contrary is equivalent to saying that the
material is incrementally anisotropic.

2.3. Shear moduli in different constitutive frameworks

It is interesting to consider what is the general response of the elastoplastic constitutive models which
assume isotropic hardening. Because the yield function is defined in the principal stress space, any stress
increment which does not change the invariants of the stress tensor, but changes the principal stress di-
rections only, is neutral with respect to the yield criterion. Consequently, it does not induce any plastic
strain, and the response is elastic. An out-of-axes shear increment corresponds exactly to this case: to the
first order, the effect of adding such an increment to the actual stress state does not change the principal
stress values, but the principal stress direction. It is easy to check this point by using a simple Mohr’s circle
construction. If the elastic part of the constitutive equation is isotropic, then the shear modulus is pre-
scribed and constant. On the other hand, an in-axes shear increment will induce plastic strain, and produce
a much softer response. As plastic strain progresses, along a monotonic loading history, the out-of-axes
shear modulus becomes relatively stiffer with respect to the in-axes shear modulus.
Other elastoplastic models incorporate more advanced features like anisotropic hardening, or non-

coaxiality; these models give more freedom to model a proper evolution of the out-of-axes shear modulus.
Hypoplastic models offer the same flexibility.
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2.4. Calibration of out-of-axes shear moduli

Out-of-axes shear moduli, once identified as independent variables needed in constitutive models, have
to be calibrated, and this is a priori difficult. Indeed, in most laboratory tests, principal stress directions are
fixed. Axisymmetric triaxial test, true triaxial tests on cubical specimens, biaxial test in plane strain are
fixed-axes tests. Out-of-axes shear moduli are simply not activated in such tests. To calibrate these moduli,
principal stress direction rotation is needed. Among laboratory tests relevant in that respect, some can-
didates fail in insuring satisfactory homogeneity over the specimen. For example all the common direct
shear cells are, of course, of this type, because they impose shearing over a prescribed plane. Even the most
refined Cambridge simple shear boxes (SSB) (Stroud, 1971), which by construction were not matching the
shear stress reciprocity requirement on adjacent faces of the box, are not homogeneous. Arthur’s DSC
(Arthur, 1988) is a pioneering apparatus, which has produced very stimulating research data, but it is a
prototype. The same is true for Grenoble’s 1c2e apparatus (Joer et al., 1992), which like Arthur’s one makes
possible general plane strain paths and proper boundary stress application. The hollow cylinder torsional
test is probably the best candidate, but still not a common test.
Strain localization is however an opportunity to fill the experimental gap between fixed-axes tests and

out-of-axes Shear moduli. Indeed, as mentioned before, these moduli enter explicitly in the bifurcation
criterion which results from so-called shear band analysis (Chambon et al., 1994b; Vardoulakis, 1980). It is
not surprising, because shear banding suddenly breaks the restriction on rotations imposed by the testing
device and allows the specimen develop locally large strain, material rotation and principal stress and strain
rate rotation. Hence out-of-axes moduli are expected to play a role in shear band analysis.
Coming back to several items of our list of motivation presented in introduction, let us recall that (i)

shear bands are observable in most laboratory tests, and that (ii) the orientation can measured easily with
reasonable accuracy. It is possible to use these observations to calibrate shear moduli.

3. CLoE hypoplastic model

CLoE model has been developed at the end of the 1980s. The model developed from the original
heuristic one proposed by Chambon and Desrues in 1983. This early version successfully extended
Rudnicki and Rice’s shear band analysis, without any restrictive assumptions, to a class of thoroughly non-
linear rate-type constitutive equations (Chambon and Desrues, 1985; Desrues, 1984; Desrues and Cham-
bon, 1989). The name of the model is an acronym of the words consistency, localization and explicit. A
detailed description of the model has been given in Chambon et al. (1994a). Only the main features are
recalled hereafter.

3.1. Basic equations

CLoE model is a rate-type constitutive model, which gives the objective stress rate _rr as a tensorial non-
linear function of the strain rate _ee.

_rr ¼ f ð _eeÞ ð7Þ

The mathematical expression of the constitutive equation is:

_rr ¼ A : _ee þ bk_eek ð8Þ

with A and b two constitutive tensors which depend on the evolution of state parameters. The non-linearity
comes from the norm k_eek. Alternatively, one can write:
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_rr ¼ A : ð_ee þ b0k_eekÞ ð9Þ

introducing b0 which will be used in the sequel. CLoE shares this general form with its precursor, the
heuristic model mentioned above (Chambon et al., 1994a), and also with the other models of the hypo-
plastic framework.
A few basic restrictions must be mentioned first. As for state parameters, the set of parameters con-

sidered in CLoE model is restricted to the stress state, meaning dependence on stress-state only, for sake of
simplicity. This is a strong limitation because it does not make possible to model cyclic behaviour. Not-
withstanding, unloading is properly modeled. Another restriction is that the material is initially isotropic.
An important feature of CLoE model is to use the concept of a limit surface defined in the principal

stress space, which cannot be trespassed. The internal formulations of the law insure that no outer-directed
stress rate can be generated for any stress state lying on the limit surface, and that this property is reached
asymptotically when approaching the limit surface. This is one aspect of the consistency requirements
automatically fulfilled in CLoE. Fig. 7 presents a cut of the limit surface in the deviatoric stress plane, and
introduces the definition of the quantity �qq, normalized deviator, which is the ratio of the deviatoric stress at
the current stress point A, divided by the maximum admissible deviatoric stress at the limit stress state
represented by point F (like failure) in the figure. The limit surface used is the van Eekelen surface (1980); it
makes possible to fix independently the compression and extension friction angles.
The way in which the two constitutive tensors A and b are defined differs a lot among Hyploplastic

models. See Kolymbas (1991) and Tamagnini et al. (2000a) for an outline of the different classes of hyp-
oplastic models. In CLoE model, A and b can be written:

A ¼

a f 0 e0

f b d 0

e d c

g

h

j

2
666666664

3
777777775

b0 ¼ k l m 0 0 0½ �T

ð10Þ

Fig. 7. CLoE model uses the concept of a limit surface bounding the admissible stress states.
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for a general stress state, and

A ¼

a e0 e0

e b d

e d b

b� d

j

j

2
666666664

3
777777775

b0 ¼ k l l 0 0 0½ �T

ð11Þ

for an axisymmetric stress state. This is due to the choice of the stress state r as the only state parameter. In
this second expression, the number of independent moduli is much reduced with respect to the first one. The
way CLoE model builds the general A and b operators is based on an interpolation procedure between A
and b operators defined for axisymmetric stress paths, in compression and in extension. The reason is that
axisymmetric tests are the most common laboratory tests for geomaterials, so that reliable stress–strain
characteristics are commonly available on these paths.
Among the moduli appearing in Eq. (11), all those in the square sub-matrix at the upper left corner can

be deduced from axisymmetric test data. As for the moduli on the diagonal, the first one is for shearing
inside the axisymmetric plane 2–3, and it is linked to the moduli of the upper left square (according to the
discussion of paragraph 2.2). However, the last two moduli called j cannot be deduced from axisymmetric
experiments: they are precisely the out-of-axes shear moduli l� discussed in Section 2. Following the dis-
cussion of this previous section, we will use bifurcation criterion to calibrate these moduli.
Modulus j, being an out-of-axes shear modulus, has to satisfy the conclusions drawn in paragraph 2.2: if

the material is isotropic, which in the case of CLoE is equivalent to saying that the stress state is isotropic,
then out-of-axes shear moduli and in-axes shear moduli are equal. In such stress states, the upper part of
the diagonal reduces to a common modulus a and the non-diagonal terms in the square to d. The in-axes
shear moduli have to be a� d. This means that, for axisymmetric stress states, the three out-of-axes shear
moduli on the lower part of the diagonal read a� d also, like shown in Eq. (12).

A ¼

a d d
d a d
d d a

a� d
a� d

a� d

2
6666664

3
7777775

b0 ¼ k k k 0 0 0½ �T

ð12Þ

This result indicates that the initial value of the out-of-axes shear modulus j is j0 ¼ a� d. As the stress
state departs from the isotropic axis in a principal stress space, j departs from j0. The evolution law assumed
in CLoE is:

j ¼ j0ð1� x�qqÞ ð13Þ

in which x is a material parameter and �qq is the deviator stress normalized by the maximum deviator stress
admissible for the same stress phase (or Lode’s angle), as illustrated in Fig. 7.
Considering this evolution law, it is clear that the parameter to be calibrated in CLoE model is not j

itself, but x. Bifurcation analysis will give us the way to make the calibration.
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3.2. Bifurcation criterion

The bifurcation criterion for CLoE results from a shear band analysis along the lines of Rudnicki and
Rice (Rice, 1976; Rudnicki and Rice, 1975), except that the constitutive law is thoroughly non-linear, and
this need some development to arrive at the explicit analytical criterion. Only the result is given here, details
can be found in Chambon et al. (2000). Another useful reference is Tamagnini et al. (2000b) in which a
comparison is given between the different hypoplastic laws with respect to shear band analysis, showing
that the same general approach can be used for all of them. As for CLoE, the general criterion reads:

kCk ¼ k1
2
ðP�1

il blknknj þ P�1
jl blknkniÞkP 1 ð14Þ

with

Pik ¼ Mijklnlnj

and

Mijkl ¼ Aijkl þ 1=2ðrildjk � rikdjl þ rjldik � rjkdilÞ

Once expressed for a given set of parameters and for a given stress state, the criterion (14) becomes a
polynomial expression of degree 4 in tan2ðhÞ:

kCk � 1 ¼ K0 þ K1 tan
2ðhÞ þ K2 tan

4ðhÞ þ K3 tan
6ðhÞ þ K4 tan

8ðhÞP 0 ð15Þ

where Ki are functions of the components of the constitutive tensors A and b0. Among those components, j
is the only one which has not been already calibrated using the experimental data from triaxial axisym-
metric tests. More precisely, the free parameter is x defined in Eq. (13).
Fig. 8 presents a plot of the criterion as a function of tan2ðhÞ for increasing values of the loading pa-

rameter during the integration of the constitutive law for an elementary volume along a triaxial stress path.

Fig. 8. The bifurcation criterion for CLoE model is a complete fourth degree polynomial function in tan2ðhÞ. It may have one or two
maximum, depending on its coefficients. During an integration of the model along a given path, the shape of the criterion changes. The

bifurcation condition is met as soon as one root exists for which the criterion is null.

3768 J. Desrues, R. Chambon / International Journal of Solids and Structures 39 (2002) 3757–3776



The criterion may have one or two maxima, depending on the coefficients Ki. These coefficients change as
the loading progresses. The two maximum have no reason to be equal. At the beginning of the loading, the
criterion is negative everywhere. The first bifurcation is encountered when the upper maximum touches the
horizontal axis, i.e. for the first positive root in tan2ðhÞ. This root defines two symmetric possible orien-
tation h and �h. If loading progresses, the maximum crosses the axis, so there is a range of orientations
possible. It may happen that the second maximum comes to touch and then cross the axis also; then a
second range of possible orientations is obtained. Only the first event is interesting on a loading program,
namely when the first maximum touches the axis; this will be considered as the bifurcation point.
It is worth noticing also that if the stress path considered for the loading program changes, the shape of

the criterion changes also because the moduli of the incremental law depend on the stress path followed.
Considering for example rectilinear stress paths in the deviatoric plane, each having a constant Lode’s
angle, it may happen that the two maxima become equal and exchange their role of upper and lower
maximum for a given Lode’s angle. A discontinuity in the orientation predicted for the first bifurcation will
occur in that case, which is not acceptable with respect to experimental observations presented in the in-
troduction. This point is discussed later.

4. Parameter identification strategy

CLoE model is not only a theoretical development; it can be used in finite element codes. A calibration
procedure has been defined for the model, and programmed as a computer code. It is not the purpose of the
present paper to enter into the details of the procedure; they can be found in Chambon et al. (1994a). It is
enough to say here that on the basis of experimental stress–strain curves recorded on different stress paths
(axisymmetric triaxial compression, extension, isotropic tests), a sequence of interactive steps makes pos-
sible to define by iteration a set of material parameters which best reflect the user’s interpretation of the
data.
Indeed, using experimental data to calibrate a model needs always some interpretation to be made. One

has to decide what is relevant in the data, and what should be left aside, because the real test conditions
does not match anymore the requirements of the element test for which the mathematical formulations
have been written. In other words, the significance of the characteristic curves recorded experimentally with
respect to a given theoretical framework has to be checked by the user. For example, the significance of a
peak in stress–strain curves is an important point, especially if a bifurcation criterion is to be used in the
analysis.

4.1. Peak stress as bifurcation point

Indeed, peaks in experimental curves can be interpreted in different ways. One possible way is softening:
one can choose to assume that the specimen remains homogeneous after the peak, and elaborate constit-
utive formulations which incorporate a progressive reduction of material strength, due to some homoge-
neous material degradation. This way has some drawbacks, among which the fact that it relies on
experiments most likely affected by localization to establish a supposed homogeneous softening law.
Another way is to consider that whatever happens after a peak in a laboratory test is the response of a

structure, not an elementary material response. This is obvious when the specimen falls into pieces just after
the peak. In more ductile tests, the experimental findings recalled in the introduction show that the first
interpretation is still the most relevant in a large number of cases, if not all. Moreover, the second leads to
ill-posed problems in analytical and numerical simulations.
The modeling choice made with CLoE is to consider that the peak is the signature of the onset of strain

localization in the specimen. Due to localization, the stress state evolution toward the limit surface in a
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triaxial test is interrupted. Highly concentrated material degradation takes place inside the shear band,
inducing local softening. Experimental evidence has been shown in Desrues et al. (1996) that so-called
Critical State void ratio in sand dense specimens is reached only inside the shear bands, and should not be
confused with the more or less arbitrary plateau shown by volumetric strain curves as the result of global
measures of the volume change of the localized specimens.
Consequently, no attempt should be made to adjust the peak stress value recorded in the tests with the

limit surface. On the contrary, attention should be focused on properly modeling the pre-peak stress–strain
response recorded, and then adjust the out-of-axes shear moduli to make the bifurcation criterion to be met
at the peak.
Fig. 9 illustrates these dispositions: a specimen of a stiff marl has been tested in axisymetric triaxial

compression; experimental (thick lines) and theoretical (thin lines) stress–strain responses are shown in the
figure. Upper curves are axial stress–strain curves, lower curves are volumetric versus axial strain. The
proposed interpretation of the experimental curves is the following: the specimen shows continuous con-
tractancy up to the peak in stress–strain curves; then localization is initiated, gross fracturing develops
quickly because the material is stiff and fine grained. As a result, global strength drops and dilatancy de-
velops due to the interplay of the fractures. Theoretical curves are adjusted to fit the pre-peak part of the
experimental curves; no attention is paid to the possibly unrealistic asymptotic strength and contractancy
predicted far after the peak: the model is not intended to be used in calculations after the bifurcation
criterion is met. It is interesting to notice that this choice makes possible to reach rupture load (i.e. bi-
furcation loads) with still stiff tangent moduli, which is consistent with experimental observations in lab-
oratory tests.

Fig. 9. Experimental and theoretical responses of a specimen tested on a axisymmetric triaxial path. As soon as homogeneity of the

specimen is lost experimentally, the theoretical prediction should not be used further. The localization criterion must be adjusted in

order to coincide with experimentally observed loss of homogeneity. The post-peak part of the formulation is not used.
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4.2. Localization criterion used to calibrate shear moduli

The next and final step in the proposed strategy is to calibrate the out-of-axes moduli using localization
criterion. The criterion is given by Eq. (15), in which the Ki are functions of the different moduli. Eq. (13)
defines the formulation of j modulus, which depends on the x parameter. Given an experimental stress
path, with a peak stress occurring at a stress state rp, and an axial strain ep, a parametric study of the
explicit criterion can be performed by integrating the model along this loading path for x in a range be-
tween 0 and 2, e.g. If x excesses 1.0 clearly j will become negative at the limit surface, which is not ac-
ceptable; however, since the constitutive model is not intended to be used beyond the bifurcation limit, the
only requirement on x is that j must be non-negative before and at bifurcation. The desired value for x is
obtained as the one for which the criterion is met at the same time as the experimental peak ðrp; epÞ. The
criterion gives also the orientation of the shear band; if the same x value does not provide a good prediction
of both the peak stress–strain and the orientation, a compromise has to be found. If the discrepancy is too
big, changes in the previous steps of the calibration should be considered.
Fig. 10 shows the evolution of the axial strain ep (left) and shear band orientation h (right) at localization

for the test presented in Fig. 9. The target values are ep ¼ 0:0043 and h ¼ 77�. With x ¼ 1:4, one gets
respectively 0:0044 and 80�5 for ep and h, which can be considered in reasonable agreement if the exper-
imental uncertainties are taken into account.

Fig. 10. Calibration of out-of-axes shear modulus parameter x using a parametric study of the dependence of the critical axial strain ep
and shear band orientation h on x.

Fig. 11. Shear band orientation evolution with Lode’s angle can become discontinuous in certain cases. This has to be checked for

correct parameter calibration.
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However, it may happen that a unique constant value of x be insufficient for a consistent prediction of
localization over the entire range of possible stress paths. At the end of the discussion of the bifurcation
criterion in paragraph 3.2, it was mentioned that in some cases, a change of the first maximum touching the
horizontal axis in Fig. 8 will induce a discontinuity in the evolution of the shear band orientation with
respect to Lode’s angle in the deviatoric plane. This is in contradiction with one of the experimental
conclusions recalled in the introduction: to the author’ knowledge, nothing like a jump in shear band
orientation for a given b value, in constant b test programs, has been reported up to now in geomaterials.
On the contrary, smooth variations have been observed by several authors (cf. references cited in the in-
troduction).
An example of such pathological behaviour of the shear band orientation prediction for a complete

scanning of the deviatoric plane between the extreme Lode’s angles 0� (triaxial compression) and 60�
(triaxial extension) is given in Fig. 11. Two set of parameters are shown, one giving a discontinuity around a

Fig. 12. A map of the occurrence of left or right maximum of the criterion as the first solution for bifurcation in a plane (x, Lode’s
angle) can be used to establish a profile xð/Þ which provides a continuous orientation evolution with /.

Fig. 13. The bifurcation surface of the model can be exhibited by a systematic exploration of the deviatoric plane, integrating the model

with bifurcation check along rectilinear so-called b-constant path in the deviatoric plane.
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Lode’s angle of 7� approximately, and the other not. The correct response has been obtained by introducing
a dependency of the parameter x on the Lode’s angle. This enhancement of the model is illustrated in Fig.
12, where a mapping of the space ðx;/Þ is presented. In this mapping, the symbols have the following
meaning: open symbol, first bifurcation is given by the maximum ‘‘1’’ of the criterion; filled symbol,
maximum ‘‘2’’ comes first. For a smooth variation of the shear band orientation, any exchange of the order
of the maximum must be rejected. The simplest profile for x variation with / is chosen: a piecewise linear
evolution represented on Fig. 12. This corresponds to the second set of parameters, which gives the non-
discontinuous response in Fig. 11.
Finally, Fig. 13 shows the set of critical stress points in the deviatoric plane of the stress space, obtained

by the systematic exploration of the response of the model on rectilinear stress paths at constant Lode’s
angle in the deviatoric plane. This set of critical points defines a Bifurcation Surface, which is well inside
the Limit Surface and also different in shape. Only one sixth of the surface is represented, because of
symmetry.

5. Discussion

One may wonder if using the localization criterion to determine some parameters of the model is not
simply adjusting to fit experimental data available. Moreover, the need of additional variation of x with
Lode angle to avoid discontinuous change in shear band orientation may give the impression that the model
predicts only the response of tests used to fit it. It is the authors’ contention that this is not the case. CLoE
model is able to predicts the stress rate response _rr to any strain rate _ee for any stress state r, on the only basis
of axisymmetric triaxial stress strain characteristics in compression and extension, plus isotropic test re-
sponse, and some limited additional input concerning unloading branches on these paths. As discussed in
the paper, out-of-axes shear moduli are not constrained by such an experimental basis: they are simply not
activated on these paths. There is a need for a way to calibrate these moduli with respect to experimental
data. The bifurcation criterion used with shear band observations is a much simpler solution than per-
forming hollow cylinder torsional tests. Of course, if the purpose of this work was only to compare the
predictions of the criterion with experimental shear band data, then it would be a useless exercise. However,
the model is intended to be used in finite element or other numerical codes. In this context, principal stress
rotation will occur virtually anywhere in the domain, and out-of-axes moduli will be activated. Moreover,
the bifurcation criterion will be checked in every stress point and the onset of localization will be predicted,
along with shear band orientation. Proper post-bifurcation modeling imposes continuity between pre- and
post-bifurcation model responses at bifurcation. The change from the first to the second kind of model,
whatever they are, has to take place at the bifurcation surface of the pre-bifurcation model (see Chambon
and Crochepeyre (1998) for details). This transition cannot be arbitrary defined, for example by an ad hoc
surface in the stress space, which would be fitted on experimental peak stress states, independently from any
bifurcation criterion. Instead, it is essential to calibrate the parameters of the model in order to met bi-
furcation criterion at the experimental peak load.
Of course, in hollow cylinder tests one is able to isolate the effect of the out-of-axes shear moduli. If such

data were available, the bifurcation criterion could be compared with experimental shear band observations
directly. In case of discrepancies, unknown factors other than out-of-axes shear moduli should be re-
searched, identified, possibly incorporated in the model formulation. This would certainly improve the
knowledge of material mechanical properties. However, in the present state of engineering, compression-
torsion hollow cylinder tests are seldom available, especially for geomaterials. A model requiring hollow
cylinder tests for calibrating its parameters would be of little help for practical applications.
Another point to discuss is the significance of out-of-axes shear moduli on localization, depending on the

pre-bifurcation deformation state. For those states that contain a plane of zero-extension, e.g. plane strain,
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shear bifurcation can occur without any, or with limited change in the strain rate direction. It is possible
that the rate of the deformation gradient inside the band is simply proportional to the rate outside, leading
to no principal axes rotation. In this special case the out-of-axes shear moduli does not play any role.
However, this is a restriction to the general plane strain deformation, thus not likely the most critical mode.
On the other hand, the difference between axisymmetric strain rate and plane strain rate is the existence of a
zero-deformation direction in the second case. The transition from one to the other, which must occur when
localization takes place, does not necessarily involve more (or less) principal strain and stress rate direction
rotation, than localization occurring in pre-bifurcation plane strain states. Thus, the significance of out-
of-axes shear moduli on localization seems not to depend much on the pre-bifurcation deformation state.
A last remark should be made to compare the model discussed here with other models able to incor-

porate softer out-of-axes shear moduli. Amongst other are the so-called deformation theory of plasticity
(Budiansky, 1959), and the vertex models (Rudnicki and Rice, 1975). These models share some important
properties with respect to shear band modeling.
A shear band analysis can be seen as a non-uniqueness study which alternative solutions involve a shear

band. Very often the additional hypothesis assuming that the fundamental solution and the alternative one
can be described by the same linear formulae giving the stress rate as a function of the velocity gradient
(usually corresponding to the loading behavior of the studied material). This point is discussed by Rice
(1976) who defined continuous bifurcations as the ones obeying the previous assumption. He defined
discontinuous bifurcation as the ones which cannot be studied with this assumption. As there is some
experimental evidence that post localization is accompanied by unloading outside the shear band, the study
of localization outside the restricted case of continuous bifurcation in the Rice’ sense seems very important.
On the other hand, it has been proven early that for very classical models, the continuous bifurcation
assumption is sound (Rice and Rudnicki, 1980), but this result is not general (see the recent discussion done
by Chambon et al. (2000) and the papers quoted in this discussion).
Deformation theory of plasticity and vertex model are models which prediction are only available for

proportional or near proportional loading. The only possible study for such models is then the study of
continuous bifurcation, as a complete study (i.e. incorporating the study of discontinuous bifurcation)
cannot be performed. On the contrary, hypoplastic models like CLoE are generally able to predict behavior
along unloading as well as loading stress paths. They are complete. Moreover a closed form general bi-
furcation criterion can be established which makes useless a restricted continuous bifurcation analysis, and
it has been proven early for a very simple version of the model that the continuous bifurcation happens
later in the loading process (Chambon and Desrues, 1985), illustrating the clear advantage of the possibility
of a general shear band analysis.

6. Conclusion

Strain localization observed in laboratory tests is not an artificial effect due to ‘‘imperfect’’ test conditions
and practice; it is an essential aspect of rupture, because rupture leads to localized deformation in most cases,
both in the laboratory and in the field. Moreover, the theoretical bifurcation approach called shear band
analysis, used with experimental observation of the onset of shear banding, gives a unique opportunity to
obtain information on the so-called out-of-axes shear moduli, which otherwise require more difficult tests to
be performed. The evolution of constitutive equations during the last 30 years have given rise to a number of
advanced models, whose complexity makes possible nowadays non-trivial bifurcation predictions. CLoE
model, a member of the hypoplastic family, has been used to illustrate these ideas. The proposed approach
for shear moduli calibration has proven its efficiency. It should be recalled in conclusion that the incidence of
a proper calibration of shear moduli on the performances of computer simulations of engineering problems
is not only concerning localization prediction, which would be already very important, but also the results
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obtained before localization, since most models used in computer simulations nowadays do not allow to
confuse in-axes and out-of-axes incremental shear moduli.
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